
Christine Yuan (cjy26)
Cuyler Crandall (csc254)
Deanna Kocher (drk225)

DEA 6210
December 17, 2019

1

Crandall, Kocher, Yuan DEA 6210

Contents
1 Abstract 3

2 Scenario 3

3 Operation 3
3.1 Bluetooth Controls . 4

4 Construction 5
4.1 Shell . 6
4.2 Drivebase . 6
4.3 Electronics Bay/Lid . 6
4.4 Follow Bot (Planter) . 6

5 Discussion 7

6 Future Work 8

A Appendix 10
A.1 Related Links . 10
A.2 Bill of Materials . 10
A.3 Arduino Code . 11

2

Crandall, Kocher, Yuan DEA 6210

1 Abstract
In this project we present Growbot, the half of the Happy Plant Happy Child system comprised of
the Growbot and the Growall. The system teaches children positive values, such as responsibility,
patience, and care, by encouraging and guiding them to take care of a plant. The child primarily
interacts with the Growbot, which tracks the health of a specific plant. When the plant has
particular needs, such as water or light, the Growbot nudges the child to complete these actions.
If the child successfully takes care of the plant over a long period of time, the Growall will being
more intricate to positively reinforce the child’s actions.

2 Scenario
Elle is a 5 year old girl who is exploring new interests. Her parents want to instill good values in
her at an early age such as responsibility, patience, and care. They install a plant system in her
room to teach her how to take care of something living and hope that she will learn other positive
lessons as well. A small robot serves as the teaching mechanism to guide Elle to take care of her
plant. The robot has a lighting system which Elle must use to provide light to her plant. She is
responsible for changing the lightbulb whenever necessary. The robot will also tug the plant around
to remind Elle to take care of it. As Elle successfully takes care of the plant, her room will change
to positively reinforce Elle’s actions. Over time, flower pieces will shift as if they are growing along
her walls. The room will seem alive to reflect the plant that Elle is taking care of.

3 Operation
The Growbot prototype is a differential drive mobile robot that in controlled by the Adafruit
Bluetooth shield controller. It has eight controls, five of which relate to drive steering. The controls
all relate to the “plant state” and help instruct the child on the best way to care for the plant. For
this first prototype, the robot-plant connection is done through “wizard-of-oz” techniques, and the
robot is controlled entirely by Bluetooth.

3

Crandall, Kocher, Yuan DEA 6210

There are three robot behaviors related to the plant state. If the plant needs water, the robot
LED strip will pulse blue rapidly. If the plant needs light (sunlight or artificial Growbot light), the
LED strip pulses yellow in the same way. When the child obliges the plant by giving it what it
needs, the LED strip pulses green at a slower rate that is similar to breathing.

The robot is free to move around on its own with the driving commands: forward, backward,
turn in place to the right, turn in place to the left. Magnets above the light switch and power
adaptor allow the robot to magnetically connect to the plant, which has multiple magnets to allow
for easy connection from different orientation. Whenever the plant needs something like water or
sunlight, the robot can link to the plant and push it over to the child. In this way, even if the child
is occupied and would otherwise forget about the plant, the robot can bring it to their attention.
To disconnect from the plant, the robot can turn in place and overcome the magnet shear strength.

3.1 Bluetooth Controls

Button Action
⇑ Drive Forward, full speed
⇓ Drive Backward, full speed
⇐ Turn in place, counterclockwise
⇒ Turn in place, clockwise
1 Pulse blue – the plant needs water
2 Pulse yellow – the planet needs light
3 Pulse green – the plant is

properly cared for
4 Stop driving commend –

sets motor speeds to 0

Figure 1: Robot Control Scheme in the Bluetooth App

4

Crandall, Kocher, Yuan DEA 6210

4 Construction

(a) Full Design (b) Cross Section

Figure 2: CAD of Growbot

At a system level, the Growbot was constructed based on the system diagram presented in Figure
3, with additional 3D printed and laser cut structures holding everything together. The subsystems
of Growbot can be roughly broken down into the Shell, Drivebase, Electronics Bay/Lid, and the
Follow Bot planter.

Arduino Uno

Bluetooth
Shield

Motor/Servo
Shield

Phone App

Motor

Gearbox

Right Wheel

Motor

Gearbox

Right Wheel

Servo

Rack/Pinion

Lid

Angular Servo

Magnet

6V
Battery Pack

Other Battery/
Power Supply

“Grow Light”

Breadboard
Circuitry

RGB LED Strip

Power Cord
Socket

Wall Socket

 = Power/Wiring
 = Serial
 = I2C
 = Bluetooth
 = Connected

Figure 3: System Diagram of the Growbot

5

Crandall, Kocher, Yuan DEA 6210

4.1 Shell

The Growbot is primarily constructed of a large 3D printed shell which provides mounting points
for a drive base, electronics bay, and lid system. Also baked into the shell’s design is a RGB LED
strip with a translucent cover and a computer power cord adapter used to power the lightbulb via a
wall socket. The drive base and electronic bay mount to the shell using #4-40 screws and heat-set
insets in rings of holes at the top and bottom of the robot.

(a) Test of LED Strip (b) Real Life Scale of Shell

Figure 4: Construction of the Shell

4.2 Drivebase

The removable drivebase on the Growbot allows for the entire bottom of the robot to be removed,
allowing for easier access to internal features, such as the magnet servo’s mounting and the power
adapter’s nuts. The drivebase itself is a laser cut wooden disk, and mounted to it are a ball caster
and two ∼ 60rpm gearmotors which power the Growbot’s motion (at a brisk 1ft s−1 pace). The
mounts for the gearmotors and wheels attached to them are 3D printed, with rubber bands added
to the wheels for traction.

4.3 Electronics Bay/Lid

The electronics bay inside the Growbot is a 3D printed drop-in frame which houses mounting for
the Adruino brain of the robot, guides for the light mount/lid support, and the servo which drives
the lid’s rack and pinion actuation. The lid support which the electronics bay servo raises and
lowers has a "grow light" attached to it by a 3D printed clip. This light is turned on or off by a
switch on the computer power cable adapter port on the rear side of the robot.

4.4 Follow Bot (Planter)

Plants the Growbot is caring for are pulled along behind it in a spherical planter riding on three
ball casters. The planter and Growbot are coupled together by a magnetic connection between

6

Crandall, Kocher, Yuan DEA 6210

Figure 5: Drivebase CAD Model (Manufactured Parts)

(a) without Electronics (b) with Electronics and Servos

Figure 6: The Electronics Bay Inside the Growbot

magnets mounted to a servo within the Growbot and in three press-fit recesses on the planter. A
curved indent matching the curvature of the Growbot helps to align the planter to the Growbot
when they are to be attached together since the growbot can drive into the recess, then spin until
the magnets are properly aligned. The planter is constructed of a 3D printed body, with its drive
base constructed similarly to the Growbot’s: a laser cut sheet of plywood, attached to the printed
body using #4-40 heat set inserts.

5 Discussion
The Growbot was capable of achieving most of the desired "feel" of the robot, but ended up lacking
in a number of functional areas. The Bluetooth control app was sluggish and our program was
prone to getting stuck believing a button to be pressed when it was not, issues which resulted in
imprecise control and many takes required for filming as the robot would rarely perform as intended.
Additionally, the rack and pinion mechanism intended to raise and lower the lid bound up, meaning

7

Crandall, Kocher, Yuan DEA 6210

(a) when Open (b) when Closed "Nightlight Mode"

Figure 7: Effects of the Grow Light

that active control of the lid was lost. For filming purposes we resorted to a cut between the robot
getting into position and us raising the lid and wedging it in that position. Both the magnet servo
and lid raising/lowering servo were never fully implemented, the lid servo because the mechanism
it drove was not functional, and the magnet servo because keeping the magnets in a static position
and spinning the Growbot to attach/detach was equally effective. Finally, the Growbot did not
have the required mass to reliably pull the loaded planter across surfaces which weren’t perfectly
flat, meaning that we had to resort to pushing the plant around for filming. Though this was a
fine solution for a single plant in straight lines, it poses challenges for the future vision of complex
paths and possibly pulling a train of plants.

Despite all of the above issues, we were able to successfully achieve more than enough to get the
Growbot functional for filming and demonstrating the concepts behind the system. The Growbot’s
adorable trundling around was popular with our test child, the diffused LED signals gave clear
indication of the plant’s needs, and the grow light provided warm illumination for the plants.
With some refinement the Growbot could easily become fully functional in all the ways we initially
intended it to be.

6 Future Work
Moving forward, the robot needs to be programmed to respond to a plant’s needs. In this situation,
the robot would not need to be Bluetooth controlled. For this condition, we would need a number
of different sensors, as shown in the table below.

Component Qty.
Soil Moisture Sensor 1
Sunlight/UV Sensor 1
Growth Sensor (Mass) 1

Grow Light 1

8

Crandall, Kocher, Yuan DEA 6210

To measure plant growth, we chose to use a mass sensor so that growth could be gauged
regardless of the direction the plant grows (i.e. a shrub vs a sunflower). In this way, as long as the
plant is generally getting bigger, it will be on average reflected by the mass of the entire pot. This
growth metric serves primarily to alert the Growall (discussed later) of the child and plant’s long
term progress.

In order to implement these sensors with the plant, we would be adding an additional Arduino
to the plant carrier, and also adding a transmitter and receiver for communication. With this
communication, the Growbot itself would be much more autonomous: able to receive signals and
react with the LED strip or drive to the robot (although this would require a way to track the
location of both robots).

Switching from the Bluetooth control will also make the drive mechanism of the robot more
functional. In its current state, the robot can only push the plant in a straight line direction because
the turning arrows turn the robot in place and disconnect the robot from the plant. With more
magnets and more comprehensive steering, Growbot would be able to push the plant across a flat
surface along a path, rather than just in a straight line.

Further, the lid raising mechanism for Growbot needs to be redesigned. The rack and pinion
setup that was originally designed binds up due to tolerancing. For a future revision we imagine
that the lid would not lift straight up with a rack and pinion, but would hinge from one side.
Lastly, in its current state, the light is powered through a separate cord that has to be plugged in
to the robot and then plugged into an outlet. For future revisions, it would be better to have a
cord that spools within the robot and can auto-retract when not in use, or if the light was powered
wirelessly. Either of these options would make the Growbot more useable for a child.

9

Crandall, Kocher, Yuan DEA 6210

A Appendix

A.1 Related Links

A video of the Growbot in action can be found on YouTube here.

A.2 Bill of Materials

Table 1: Purchased Components

Component Unit Qty.
LED Strip ft. 3
Motors ea. 2

5/8" Casters ea. 5
12V Battery Carrier ea. 1

Adafruit Bluetooth Shield ea. 1
Adafruit Motor/Servo Shield ea. 1

1/8" Plywood Sheet ft2 1
3/16" Plywood Sheet ft2 1

Zip Ties ea. ∼ 8
Male-Male Wire Connectors ea. ∼ 15

#4-40 Heat Set Inserts ea. ∼ 20
5/16" Screws, assorted ea. ∼ 5
#4-40 Screws, assorted ea. ∼ 20

Table 2: Fabricated Components

Component Qty. Manufacturing Method
Robot Body 1 3D Printed
Robot Hat 1 3D Printed
Bulb Mount 1 3D Printed
Plant Carrier 1 3D Printed

Wheels 2 3D Printed
Motor Mount 2 3D Printed
Electronics Bay 1 3D Printed

Magnet Servo Mount 1 3D Printed
Magnet Servo Horn 1 3D Printed

LED Strip Cover Quadrent 4 3D Printed (Translucent filament)
Wheel Bases 2 Laser Cut
Rack Guide 1 Laser Cut

Rack 1 Laser Cut
Pinion Gear 1 Laser Cut

10

https://www.youtube.com/watch?v=IgwldWjIY88&feature=youtu.be

Crandall, Kocher, Yuan DEA 6210

A.3 Arduino Code

Libraries that must be imported (all available for download in the Arduino interface):

• Adafruit BluefruitLE nRF51

• Adafruit Motorshield v2 Library

• FastLED

• Servo

Accessible files (in the Arduino folder)

• BluefruitConfig.h

• packetParser.cpp

1 /***
2 This is an example for our nRF51822 based Bluefruit LE modules
3
4 Pick one up today in the adafruit shop!
5
6 Adafruit invests time and resources providing this open source code,
7 please support Adafruit and open-source hardware by purchasing
8 products from Adafruit!
9
10 MIT license, check LICENSE for more information
11 All text above, and the splash screen below must be included in
12 any redistribution
13 ***/
14
15 #include <string.h>
16 #include <Arduino.h>
17 #include <SPI.h>
18 #include "Adafruit_BLE.h"
19 #include "Adafruit_BluefruitLE_SPI.h"
20 #include "Adafruit_BluefruitLE_UART.h"
21 #include <FastLED.h>
22 #include <Wire.h>
23 #include <Adafruit_MotorShield.h>
24 #include <Servo.h>
25
26
27 #include "BluefruitConfig.h"
28
29 #if SOFTWARE_SERIAL_AVAILABLE
30 #include <SoftwareSerial.h>
31 #endif
32

11

Crandall, Kocher, Yuan DEA 6210

33 /*
===

34 APPLICATION SETTINGS
35
36 FACTORYRESET_ENABLE Perform a factory reset when

running this sketch
37
38 Enabling this will put your Bluefruit

LE module
39 in a ’known good’ state and clear any

config
40 data set in previous sketches or projects

, so
41 running this at least once is a good

idea.
42
43 When deploying your project, however,

you will
44 want to disable factory reset by setting

this
45 value to 0. If you are making changes

to your
46 Bluefruit LE device via AT commands,

and those
47 changes aren’t persisting across resets,

this
48 is the reason why. Factory reset will

erase
49 the non-volatile memory where config data

is
50 stored, setting it back to factory

default
51 values.
52
53 Some sketches that require you to

bond to a
54 central device (HID mouse, keyboard, etc

.)
55 won’t work at all with this feature

enabled
56 since the factory reset will clear all of

the
57 bonding data stored on the chip, meaning

the
58 central device won’t be able to reconnect

.
59 MINIMUM_FIRMWARE_VERSION Minimum firmware version to have some new

12

Crandall, Kocher, Yuan DEA 6210

features
60 MODE_LED_BEHAVIOUR LED activity, valid options are
61 "DISABLE" or "MODE" or "BLEUART" or
62 "HWUART" or "SPI" or "MANUAL"
63 ---

*/
64 #define FACTORYRESET_ENABLE 1
65 #define MINIMUM_FIRMWARE_VERSION "0.6.6"
66 #define MODE_LED_BEHAVIOUR "MODE"
67
68 //LED Strip Pins
69 #define NUM_LEDS 47
70 #define DATA_PIN 3
71 /*

===

*/
72
73 // Create the bluefruit object, either software serial...uncomment

these lines
74 /*
75 SoftwareSerial bluefruitSS = SoftwareSerial(BLUEFRUIT_SWUART_TXD_PIN,

BLUEFRUIT_SWUART_RXD_PIN);
76
77 Adafruit_BluefruitLE_UART ble(bluefruitSS, BLUEFRUIT_UART_MODE_PIN,
78 BLUEFRUIT_UART_CTS_PIN, BLUEFRUIT_UART_RTS_PIN);
79 */
80
81 /* ...or hardware serial, which does not need the RTS/CTS pins.

Uncomment this line */
82 // Adafruit_BluefruitLE_UART ble(BLUEFRUIT_HWSERIAL_NAME,

BLUEFRUIT_UART_MODE_PIN);
83
84 /* ...hardware SPI, using SCK/MOSI/MISO hardware SPI pins and then user

selected CS/IRQ/RST */
85 Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_CS, BLUEFRUIT_SPI_IRQ,

BLUEFRUIT_SPI_RST);
86
87 /* ...software SPI, using SCK/MOSI/MISO user-defined SPI pins and then

user selected CS/IRQ/RST */
88 //Adafruit_BluefruitLE_SPI ble(BLUEFRUIT_SPI_SCK, BLUEFRUIT_SPI_MISO,
89 // BLUEFRUIT_SPI_MOSI, BLUEFRUIT_SPI_CS,
90 // BLUEFRUIT_SPI_IRQ, BLUEFRUIT_SPI_RST);
91
92
93 // A small helper
94 void error(const __FlashStringHelper*err) {
95 Serial.println(err);
96 while (1);

13

Crandall, Kocher, Yuan DEA 6210

97 }
98
99 // function prototypes over in packetparser.cpp

100 uint8_t readPacket(Adafruit_BLE *ble, uint16_t timeout);
101 float parsefloat(uint8_t *buffer);
102 void printHex(const uint8_t * data, const uint32_t numBytes);
103
104 // the packet buffer
105 extern uint8_t packetbuffer[];
106
107 /*

*/

108 /*!
109 * external components we are adding for growbot
110 * LED Strip
111 * Motors
112 * Servos
113 */
114 /*

**
*/

115
116 //define the array of leds
117 CRGB leds[NUM_LEDS];
118
119
120 //set up button booleans
121 //set up booleans for buttons to toggle
122 int buttons[] = {0, 0, 0, 0, 0, 0, 0, 0};
123 int count = 0;
124 const int servomagpin = 9;
125 const int lidservopin = 10;
126
127 Adafruit_MotorShield AFMS = Adafruit_MotorShield();
128 Adafruit_DCMotor *leftMotor = AFMS.getMotor(1);
129 Adafruit_DCMotor *rightMotor = AFMS.getMotor(2);
130
131 Servo servomag;
132 Servo lidservo;
133
134
135 int mpos = 0;
136 int lpos = 0;
137
138
139
140 /*

14

Crandall, Kocher, Yuan DEA 6210

**
*/

141 /*!
142 @brief Sets up the HW an the BLE module (this function is called
143 automatically on startup)
144 */
145 /*

**
*/

146 void setup(void)
147 {
148 while (!Serial); // required for Flora & Micro
149 delay(500);
150
151 Serial.begin(115200);
152 Serial.println(F("Adafruit Bluefruit App Controller Example"));
153 Serial.println(F("---"));
154
155 /* Initialise the module */
156 Serial.print(F("Initialising the Bluefruit LE module: "));
157
158 if (!ble.begin(VERBOSE_MODE))
159 {
160 error(F("Couldn’t find Bluefruit, make sure it’s in CoMmanD mode &

check wiring?"));
161 }
162 Serial.println(F("OK!"));
163
164 if (FACTORYRESET_ENABLE)
165 {
166 /* Perform a factory reset to make sure everything is in a known

state */
167 Serial.println(F("Performing a factory reset: "));
168 if (! ble.factoryReset()){
169 error(F("Couldn’t factory reset"));
170 }
171 }
172
173
174 /* Disable command echo from Bluefruit */
175 ble.echo(false);
176
177 Serial.println("Requesting Bluefruit info:");
178 /* Print Bluefruit information */
179 ble.info();
180
181 Serial.println(F("Please use Adafruit Bluefruit LE app to connect in

Controller mode"));

15

Crandall, Kocher, Yuan DEA 6210

182 Serial.println(F("Then activate/use the sensors, color picker, game
controller, etc!"));

183 Serial.println();
184
185 ble.verbose(false); // debug info is a little annoying after this

point!
186
187 /* Wait for connection */
188 while (! ble.isConnected()) {
189 delay(500);
190 }
191
192 Serial.println(F("******************************"));
193
194 // LED Activity command is only supported from 0.6.6
195 if (ble.isVersionAtLeast(MINIMUM_FIRMWARE_VERSION))
196 {
197 // Change Mode LED Activity
198 Serial.println(F("Change LED activity to " MODE_LED_BEHAVIOUR));
199 ble.sendCommandCheckOK("AT+HWModeLED=" MODE_LED_BEHAVIOUR);
200 }
201
202 // Set Bluefruit to DATA mode
203 Serial.println(F("Switching to DATA mode!"));
204 ble.setMode(BLUEFRUIT_MODE_DATA);
205
206 Serial.println(F("******************************"));
207 /*

*/

208 //LED Strip Setup
209 FastLED.addLeds<NEOPIXEL, DATA_PIN>(leds, NUM_LEDS);
210 for(int x = 0; x < NUM_LEDS; x++)
211 {
212 leds[x] = CRGB(0, 0, 0);
213 FastLED.show();
214 }
215
216 /*

**
*/

217
218 //motor setup
219
220 AFMS.begin(); // create with the default frequency 1.6KHz
221 //AFMS.begin(1000); // OR with a different frequency, say 1KHz
222
223 // Set the speed to start, from 0 (off) to 255 (max speed)

16

Crandall, Kocher, Yuan DEA 6210

224 rightMotor->setSpeed(200);
225 rightMotor->run(FORWARD);
226 // turn on motor
227 rightMotor->run(RELEASE);
228
229 leftMotor->setSpeed(200);
230 leftMotor->run(FORWARD);
231 // turn on motor
232 leftMotor->run(RELEASE);
233
234 // servomag.attach(servomagpin);
235 // lidservo.attach(lidservopin);
236 // servomag.write(90);
237
238 }
239
240 /*

**
*/

241 /*!
242 @brief Constantly poll for new command or response data
243 */
244 /*

**
*/

245
246
247 void loop(void)
248 {
249 /* Wait for new data to arrive */
250 uint8_t len = readPacket(&ble, BLE_READPACKET_TIMEOUT);
251 // if (len == 0) return;
252
253 /* Got a packet! */
254 // printHex(packetbuffer, len);
255 // Buttons
256 if (packetbuffer[1] == ’B’) {
257 uint8_t buttnum = packetbuffer[2] - ’0’;
258 boolean pressed = packetbuffer[3] - ’0’;
259 Serial.print ("Button "); Serial.print(buttnum);
260 if (pressed)
261 {
262 if(buttnum == 1) //pulse blue a few times
263 {
264 for(int z = 0; z < 4; z++)
265 {
266 for(int x = 0; x < 100; x++)
267 {

17

Crandall, Kocher, Yuan DEA 6210

268 for(int y = 0; y < NUM_LEDS; y++)
269 {
270 leds[y] = CRGB(0, 0, x);
271 }
272 FastLED.show();
273 delay(4);
274 }
275
276 for(int x = 100; x >= 0; x--)
277 {
278 for(int y = 0; y < NUM_LEDS; y++)
279 {
280 leds[y] = CRGB(0, 0, x);
281 }
282 FastLED.show();
283 delay(4);
284 }
285 delay(300);
286 }
287 }
288 else if(buttnum == 2) //pulse yellow
289 {
290 for(int z = 0; z < 4; z++)
291 {
292 for(int x = 0; x < 100; x++)
293 {
294 for(int y = 0; y < NUM_LEDS; y++)
295 {
296 leds[y] = CRGB(x, x, 0);
297 }
298 FastLED.show();
299 delay(4);
300 }
301
302 for(int x = 100; x >= 0; x--)
303 {
304 for(int y = 0; y < NUM_LEDS; y++)
305 {
306 leds[y] = CRGB(x, x, 0);
307 }
308 FastLED.show();
309 delay(4);
310 }
311 delay(300);
312 }
313 }
314 else if(buttnum == 3) //plant happy pulse green
315 {

18

Crandall, Kocher, Yuan DEA 6210

316 for(int z = 0; z < 4; z++)
317 {
318 for(int x = 30; x < 150; x++)
319 {
320 for(int y = 0; y < NUM_LEDS; y++)
321 {
322 leds[y] = CRGB(0, x, 0);
323 }
324 FastLED.show();
325 delay(10);
326 }
327
328 for(int x = 150; x >= 30; x--)
329 {
330 for(int y = 0; y < NUM_LEDS; y++)
331 {
332 leds[y] = CRGB(0, x, 0);
333 }
334 FastLED.show();
335 delay(10);
336 }
337 }
338
339 for(int x = 30; x >= 0; x--)
340 {
341 for(int y = 0; y < NUM_LEDS; y++)
342 {
343 leds[y] = CRGB(0, x, 0);
344 }
345 FastLED.show();
346 delay(10);
347 }
348
349 delay(30);
350 }
351 else if(buttnum == 4) //detach from plant
352 {
353 //rightMotor->run(BACKWARD);
354 //leftMotor->run(BACKWARD);
355 //delay(500);
356 rightMotor->run(RELEASE);
357 leftMotor->run(RELEASE);
358 }
359
360 else if(buttnum == 5 || buttnum == 6 || buttnum ==7 || buttnum ==

8)
361 {
362 if (buttnum == 5) //this is button 5, forward

19

Crandall, Kocher, Yuan DEA 6210

363 {
364 rightMotor->run(BACKWARD);
365 leftMotor->run(FORWARD);
366 }
367 if (buttnum == 6) //button 6, backwards
368 {
369 rightMotor->run(FORWARD);
370 leftMotor->run(BACKWARD);
371 }
372 if (buttnum == 7) //button 7 turn left
373 {
374 rightMotor->run(BACKWARD);
375 leftMotor->run(BACKWARD);
376 }
377 if (buttnum == 8) //button 8 turn right
378 {
379 rightMotor->run(FORWARD);
380 leftMotor->run(FORWARD);
381 }
382 }
383 else
384 {
385 rightMotor->run(RELEASE);
386 leftMotor->run(RELEASE);
387 }
388
389
390
391 }
392 else
393 {
394 Serial.println(" released");
395 }
396 }
397
398 }

20

	Abstract
	Scenario
	Operation
	Bluetooth Controls

	Construction
	Shell
	Drivebase
	Electronics Bay/Lid
	Follow Bot (Planter)

	Discussion
	Future Work
	Appendix
	Related Links
	Bill of Materials
	Arduino Code

